Nonparametric Two-Sample Tests on Homogeneous Riemannian Manifolds, Cholesky Decompositions and Dyslexia Detection from Diffusion Tensor Imaging Outputs

نویسندگان

  • Daniel Osborne
  • Vic Patrangenaru
چکیده

This paper addresses much needed asymptotic and nonparametric bootstrap methodology for two-sample tests for means on Riemannian manifolds with a simply transitive group of isometries. In particular, we develop a two-sample procedure for testing the equality of the generalized Frobenius means of two independent populations on the space of symmetric positive matrices. The new method naturally lead to an analysis based on Cholesky decompositions of covariance matrices which helps to decrease computational time and does not increase dimensionality. The resulting nonparametric matrix valued statistics are used for testing if there is a difference on average between corresponding signals in Diffusion Tensor Images (DTI) in young children with dyslexia when compared to their clinically normal peers, based on data that was previously analyzed using parametric methods. Both methodologies show a significant difference. Short title: Two Sample Tests on Homogeneous Spaces

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in...

متن کامل

A Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis

This paper presents a novel statistical fuzzy-segmentation method for diffusion tensor (DT) images and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g. those based on fuzzyC-means (FCM), incorporate Gaussian class models which are inherently biased towards ellipsoidal clusters. Fiber bundles in DT images, however, comprise tensors that can inherently lie on more-complex ...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Nonparametric bootstrap of sample means of positive-definite matrices with an application to diffusion-tensor-imaging data analysis

This paper presents nonparametric two-sample bootstrap tests for means of random symmetric positive-definite (SPD) matrices, according to two different metrics: the Frobenius (or Euclidean) metric, inherited from the embedding of the set of SPD metrics in the Euclidean set of symmetric matrices, and the canonical metric, which is defined without an embedding and suggests an intrinsic analysis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012